
<\ i t>
03
ft

«. TJ
UJ (••.; a ^ •

r 'is
^ : "t5 Ö

I*"' '. :J< fl
"■■'■' ,

M O

!v.' : *'-'"'■ !3
st,.. •. c; -, *v! I

►4

p
BMD TECHNICAL INFORMATION CENTER

BALLISTIC MISSILE DEFENSE ORGANIZATION
7100 DEFENSE PENTAGON

WASHINGTON D.C. 20301-7100

Ü33 57

Accession Number: 3357

Publication Date: Dec 01, 1991

Title: Massively Parallel Computing at Sandia and Its Application to National Defense (Preprint)

Personal Author: Dosanjh, S.S.

Corporate Author Or Publisher: Sandia National Laboratories, Albuquerque, NM 87185 Report Number: SAND-91-0278C

Report Prepared for: U.S. Dept. of Energy

Descriptors, Keywords: Parallel Processing Computer MIMD SRIM SDI Tracking Application SAR Model Simulation

Pages: 00010

Cataloged Date: Jan 30, 1992

Contract Number: DE-AC04-76DPOO789

Document Type: HC

Number of Copies In Library: 000001

Original Source Number: DE910O8178

Record ID: 23171

Source of Document: DOE

coiop-^/n^ i-i

SAND—91-027fir
MASSIVELY PARALLEL COMPUTING AT SANDIA UZ/ÖL

AND ITS APPLICATION TO NATIONAL DEFENSE DE91 008178

SUDIP S. DOSANJH
Sandia National Laboratories
Albuquerque, New Mexico

ABSTRACT

TISTESüflOi'i ST^.TEMEITT^A

Ä„„,..r~~~A -f.-i-r rjuWc release;

Distribution Unlimited

Two years ago, researchers at Sandia National Laboratories showed that a massively parallel com-
puter with 1024 processors could solve scientific problems more than 1000 times faster than a single
processor. Since then, interest in massively parallel processing has increased dramatically. This re-
view paper discusses some of the applications of this emerging technology to important problems at
Sandia. Particular attention is given here to the impact of massively parallel systems on applications
related to national defense. New concepts in heterogenous programming and load balancing for
MIMD computers are drastically increasing synthetic aperture radar (SAR) and SDI modeling capa-
bilities. Also, researchers are showing that the current generation of massively parallel MIMD and
SM) computers are highly competitive with a CRAY on hydrodynamic and structural mechanics
codes that are optimized for vector processors.

INTRODUCTION
Two years ago, Sandia National Laboratories won the Gordon Bell Prize, the Karp Challenge and a R&D 100

award for its pioneering research in massively parallel computing.1 A major contribution of this work was to show that
speedups of greater than 1000 could be achieved on scientific problems using a first generation massively parallel ma-
chine with 1024 processors - previously, conventional wisdom was that it would be difficult to use as many as one hun-
dred processors to solve a single problem Researchers at Sandia and elsewhere are now showing that the current (second)
generation of massively parallel computers manufactured by nCUBE, Thinking Machines, INTEL, and others can out-
perform traditional vector supercomputers on a wide range of applications.2"5 In the next few years, significant advances
in massively parallel systems are anticipated as more processors are added and the computational power of each proces-

sor increases.
Conventional vector processors, on the other hand, are not expected to make major gains in the near future. During

the past decade, clockspeeds on the fastest supercomputers have increased by a factor of two. While a factor of two might
be a major improvement in many fields, it is very small in the computer industry. By contrast, the microprocessor revo-
lution has led to order of magnitude improvements in desktop computers. The slow increase of supercomputer speeds is
attributable to a fundamental physical barrier - namely, the speed of light Clockspeeds on vector supercomputers are
now measured in nanoseconds. For reference, one nanosecond is approximately the time it takes light to travel a foot
Dramatic increases in performance will not occur without a major technological breakthrough in, for example, high tem-

perature superconductivity, that allows the size of these supercomputers to be decreased dramatically.
It is becoming increasingly evident that massively parallel systems represent the future of supercomputing. All of

the major supercomputer vendors, including CRAY, DEC and IBM, have recently announced major projects to develop
massively parallel machines. The Japanese government is now investing heavUy in this technology and on a recent sci-
entific visit to the Soviet Union, Sandia researchers learned that the Soviets have developed a 128 node parallel computer

that gives CRAY-class performance.
During the last two years, Sandia's massively parallel computing effort has grown to more than fifty researchers.

Large-scale scientific calculations are being conducted on an nCUBE 2, a Connection Machine (CM-2), a first generation
nCUBE/ten (sometimes referred to as an nCUBE 1), and a network of workstations. Sandia is also a member of a con-

Ef
1 ill u V.5.

CSIWBUTIONOFWISDO ^

sortium headed by Caltech that is purchasing a large INTEL Delta prototype. The nCUBE 2 at Sandia has 1024 proces-

sors, 4 Gigabytes of memory, and will soon have a 16 Gigabyte parallel disk system. Typical applications are executed

at 1 to 2 billion calculations per second (Gigaflops) and the speed can be increased to over 10 Gigaflops by going to a

system with the maximum possible 8192 processors. The CM-2 at Sandia has 16384 processors, 2 Gigabytes of memory

and a 10 Gigabyte disk farm Currently, as much as half of the total usage of our nCUBE 2 and CM-2 is by external

researchers at universities, other national laboratories and private companies.
These massively parallel computers are being used at Sandia to solve a wide range of problems involving, for ex-

ample, radar imaging, SDI tracking and correlating, shock physics, structural mechanics, fluid mechanics, heat transfer,

the motion of charged particle beams through accelerators, molecular dynamics and quantum chemistry. In order to sup-

port these activities, research is conducted in mathematical algorithms, load balancing, domain decomposition, grid gen-

eration, and graphics. The work in mathematical algorithms includes both the development of new methods (e.g., parallel

time stepping, which is a technique to accelerate time marching on parallel computers) and the parallel implementation

of existing techniques (e.g. multigrid and conjugate gradient based schemes for solving systems of linear equations aris-

ing from the solution of partial differential equations).6"8 Novel dynamic load balancing techniques have been construct-

ed for Monte Carlo problems and particle simulations - similar techniques are being investigated for hydrodynamics and

shock physics computer codes.2

Work in graphics is being stressed because the problems being solved on massively parallel computers are large.

One Gigabyte of data is often considered small in the applications of interest. It is next to impossible to analyze and eval-

uate results from such calculations without visualization. All of the large Sandia parallel machines (the nCUBE 2, CM-

2 and nCUBE/ten) have graphics systems and a Stardent GS2000 with a Application Visualization System (AVS) is

available.
This review paper discusses some of the codes that are being implemented on massively parallel computers at San-

dia. Particular attention is given to codes that are used extensively to support national defense programs. The following

sections discuss the parallel implementation and performance of radar imaging, SDI tracking and correlating, shock

physics and structural mechanics models.

SYNTHETIC APERATURE RADAR SIMULATIONS
Synthetic-aperture radar (SAR) is often used in reconnaissance and remote sensing applications. SAR systems

transmit and receive coherent broadband signals that are processed and focused to produce terrain images. These systems

can be used at day or night and in all types of weather.
Computer simulations are needed to assess the performance of SARs. These models use ray tracing techniques

similar to those employed in computer graphics. In military applications, difficulties arise because objects of interest

have many edges and multiple reflections can occur. Consequently, as many as a million rays are needed to provide ad-

equate resolution. It can easily take more than an hour to construct a complicated image using a conventional supercom-

puter. This is due to low efficiencies resulting from a poor match between the ray tracing problem and vector

architectures. Because thousands of orientations are often required, many problems of interest are intractable using

CRAY-type computers.
A massively parallel, MIMD version of a radar imaging code, SRIM, has been developed at Sandia. The beam is

modeled as a collection of rays that leave the radar and bounce off targets, and a radar or optical image is constructed

from ray-target intersections. The geometry of the objects and their reflection characteristics are specified a priori in the

model (see Fig. 1).
The output of SRIM is an idealized, noise-free radar image whose resolution is limited only by the number of rays

used. A real radar image has noise and finite resolution, both of which can be modeled accurately. A new parallel pro-

-2-

Fig. 1. Sample input for a SRIM calculation.

gram, ICON, has been developed to convert a SRIM ideal radar image to a realistic image that might actually be produced

by a SAR system. The realistic image is constructed by adding random noise and convolving the data with a response

function. The convolution is carried out using Fourier transforms on a hypercube. The parallel Fast Fourier transforms

that have been developed for this work are very efficient (approximately three times as fast as comparable CRAY algo-

rithms). These FFT routines can also be used for problems in fluid mechanics, quantum chemistry (e.g., electronic struc-

ture) and electromagnetism.
Extraordinary parallel performance has been achieved for SRIM by using new heterogeneous programming con-

cepts and a dynamic load balancing algorithm. Typically, a 1024 processor first generation MIMD computer is about a

factor of eight faster than a CRAY - a second generation MIMD machine with 1024 processors is a factor of forty faster.

Therefore, problems that take more than an hour on the CRAY are executed in minutes on massively parallel computers.

The parallel version of SRIM takes full advantage of the special characteristics of MIMD computers by executing

several cooperating programs simultaneously in a heterogeneous manner. The serial version of SRIM consists of two

codes; one traces rays and the other generates radar images from ray histories. These codes are executed consecutively.

After calculating ray trajectories, results are written to a large intermediate file. This file is then used as input for the

imaging calculation. In the MIMD version of SRIM, both of these programs are executed simultaneously by different

sets of processors. Data is transferred from the ray tracing nodes to the image construction nodes in real-time through a

very high bandwidth connection.
Typically, on a 1024 processor nCUBE 2 computer, 508 processors calculate beam paths and 508 construct partial

images (each of these image construction nodes receives data from a single ray tracing processor). Of the remaining eight

nodes, four are used to manage the calculation, by means of dynamic load balancing, while the other four help integrate

-3-

the partial images into a complete image at the end of the calculation. The collected image is written to a disk to await
further processing; it can also be sent to the real-time graphics system on the nCUBE 2 or the nCUBE/ten for immediate

display.
Less than five-percent of the 30,000 lines of FORTRAN in SRIM were changed to develop the parallel version.

This is partially due to the excellent match between ray tracing problems and MIMD architectures. Ray trajectories are
independent and, for almost all problems of interest, the objects' geometry can be stored in every processor's memory.

In problems of this type, computational performance can degrade significantly due to load imbalances. This is due
to the fact that different ray trajectory calculations can expend vastly varying amounts of computer time - some rays
undergo multiple reflections and eventually return to the radar while others miss the object completely and leave the do-
main of interest early in the computation. Because static task assignments can lead to poor parallel performance, dynamic

methods have been investigated.
A unique Sandia contribution in this area has been the development of a dynamic load balancing algorithm that

uses more than one node as a manager. Each manager is assigned a subset of the ray tracing processors and is given a list
of tasks to accomplish. Currently, task assignments to these managers are static. The managers, in turn, give work to their
processors dynamically. Whenever a worker processor completes its assigned tasks, it sends a message to its manager

and receives additional work
The optimum number of managers for a wide range of SAR simulations on a 1024 processor nCUBE/ten is eight

or sixteen. There is an increase in the total execution time when the number of managers is increased or decreased sig-
nificantly out of this range - however, the minimum is fairly shallow so that small changes in the number of managers
will not have a large impact on execution times. With fewer than four managers, many worker nodes are idle as they wait
for tasks. The managers become overloaded as anywhere from a hundred thousand to a million messages are received.
On the other hand, computational resources are wasted when more than thirty-two processors are used as managers. On
a 1024 processor nCUBE 2, cut-through routing has a dramatic impact on the load balance process; in this case, four

managers result in the fastest execution time.
Overall, the use of dynamic load balancing methods, instead of static task assignments, improves the execution

time on a MIMD computer by a factor of two to three. Approximately thirty percent of this gain is due to using multiple

managers.
Gains in speed resulting from the use of massively parallel computers and dynamic load balancing techniques are

allowing researchers to construct image databases for objects in days instead of months, drastically increasing our capa-
bilities in this area. It is also important to note that the load balancing algorithms developed here have broad applicability
to Monte Carlo methods which are used, for example, to simulate electron microscope performance, investigate phase

changes in materials, and study radiative heat transfer.

SDI TRACKING AND CORRELATING
Success of the Strategic Defense Initiative depends heavily on the development of computational tools to track

the motion of a large number of projectiles. Because each missile can hold multiple warheads and decoys, the computer
model must calculate the trajectories of more than one-hundred thousand objects. Furthermore, results are only useful if
they can be provided in real-time. The input to the computer model is a series of sensor scans from various angles, pro-
vided as often as every two seconds. The goal is to convert these two-dimensional images into three-dimensional trajec-
tories. The TRC code was developed to calculate trajectories of missiles during the midcourse phase (i.e., from the time
they leave the atmosphere to when they re-enter). Once multiple warheads and decoys are released from a missile, they

follow Kepler orbits.
A massively parallel version of the TRC code has been implemented at Sandia on a 1024 processor MIMD ma-

-4-

50

40

30
■>,-":r::::,:;

OT:"^::

§20

Original TRC Code (6/89)

SNL Version (10/89)

SNL Version (6/90)

1000 2000
Number of Objects

Fig. 2. Computer memory needed to solve tracking problems of various sizes.

20

10 _

(0

3
O

» 0

OcM990

Nov1990

I I
30,000 60,000

Number of Objects

Fig. 3. The dependence of execution time on the number of objects has been reduced significantly. In the course of

solving larger problems, Sandia researchers discovered and removed numerous bottlenecks in the algorithm. These

bottlenecks have a tremendous impact on simulations with many objects, and almost no effect on small problems.

-5

chine.3 Most of the processors track objects - however, a few manager (or gating) nodes are used to provide updated

information as new sensor reports are generated. At the start of a calculation, several objects are assigned to each track-

ing processor. During the simulation, the gating nodes analyze new sensor reports and determine which objects belong

to which processors. These managing nodes then send the appropriate updated positions to each tracking processor.

Two years ago, the largest tracking problem that had been solved on a traditional supercomputer involved 128

projectiles. Simulations with more than 50,000 objects are now routinely conducted on massively parallel computers.

This is partially due to dramatic decreases in the amount of memory required to solve a given problem (see Hg.2). In

the original code, the memory required increased quadratically with the number of projectiles. Sandia modifications have

resulted in a linear dependence, drastically increasing the size of the problems that could be addressed.

Another important result is that the execution time of the massively parallel model increases only logarithmically

with the number of projectiles. Therefore, as evidenced by Fig.3, only a limited amount of additional computer time is

needed to investigate larger problems. The TRC code is currently executing three to four times faster on a 1024 processor

nCUBE/ten than on a CRAY-YMP processor. This translates into a performance gain of twenty to thirty times over the

CRAY on a nCUBE 2 with 1024 processors.

SHOCK PHYSICS
The ability to model shock physics is critical when studying high speed collisions between objects. Simulations

often provide information that is not available from experiments and can help design and analyze experiments. The CTH

code was developed at Sandia to investigate a wide spectrum of shock physics problems ranging from armor/antiarmor

performance to weapons safety.9 This code has recently been used to analyze potential damage to a NASA space station

from collisions with debris. Natural debris, in the form of micrometeorites, as well as man-made debris from vehicles

launched by the vast array of countries with space programs, are of concern.
It has become increasingly evident that an adequate three-dimensional shock physics modeling capability cannot

be developed using current vector supercomputers. This is due to both speed and memory constraints. Two-dimensional

calculations can take many hours on the fastest vector computers. Order of magnitude increases in computer speed are

needed to solve three-dimensional problems in any reasonable time frame. Even if speed were not a consideration, the

memory on these machines is not large enough to provide adequate grid resolution. Massively parallel computers will

let researchers overcome these hurdles and develop a credible three-dimensional capability. In addition, these computers

will help researchers solve two-dimensional problems faster and more economically.

An effort is underway to develop massively parallel versions of the CTH code for MIMD and SIMD architectures.

CTH is a fully -compressible, multi-material shock hydrodynamics code. A high-resolution interface tracker is used to

prevent distortion of material interfaces. High temperatures and multi-phase equations of state (solid, liquid and vapor)

are considered in the model. Elastic-plastic behavior, high explosive detonations and fracture are also treated. An Eule-

rian mesh is used to solve the partial differential equations and higher-order differencing is employed on most approxi-

mations to the governing equations.
In the parallel implementation, each processor is assigned a portion of the computational grid. This process is of-

ten referred to as domain decomposition. In CTH, regular rectangular and cylindrical geometries are of particular inter-

est. Processors are assigned subgrids with equal numbers of grid points and interprocessor communication is minimized

by using subgrids that are rectangular or regular sections of a cylinder. Domain decomposition for a rectangular grid is

illustrated in Fig. 4.
In a CTH calculation, interprocessor communication is very localized. Processors need information from a neigh-

bor's subgrid during material interface reconstruction and when derivatives are differenced. However, data is only need-

ed from the outer layer of a neighbor's subgrid. In order to facilitate the exchange of information between processors, a

-6-

Fig. 4. Schematic illustrating domain decomposition for a problem which will be solved using eight processors and

a rectangular three-dimensional mesh. Each processor is assigned a rectangular subgrid.

Fig. 5. Interprocessor communication using "ghost" cells. The dark points are grid points on which the solution is

calculated by the processor in question, while the lighter points are dummy cells that temporarily hold information

communicated by a neighboring processor. Entire sides of the grid are exchanged at one time.

layer of communication cells are added to the boundary of each processor's subgrid (see Fig. 5). These cells are dummy

ghost cells that temporarily hold information before it is needed. In a three-dimensional calculation, these ghost cells al-

low entire faces of the subgrid to be exchanged at one time, thus reducing the number of message start-up delays that are

incurred.
A first assessment of the parallel performance of CTH has been completed. This work has shown that the current

generation of massively parallel computers can outperform a CRAY Y-MP processor even on problems that are highly

vectorized. A two-dimensional version of the hydrodynamics routines that are the basis for CTH has been implemented

on both a CM-2 and a nCUBE 2. This version includes the multiple-material mass, momentum and energy equations, the

interface tracker and simplified equations of state. Preliminary results are very encouraging (see Table 1). On a 512 by

512 mesh, a 1024 processor nCUBE is five times faster than a CRAY-YMP processor and a 16,384 processor CM-2 is

one and a half times faster than the CRAY. The nCUBE can be expanded to 8192 nodes while a CM-2 can have 65,536

processors. It is important to note that 512 by 512 problems are very small for the nCUBE and the CM-2 and that their

-7

TABLE 1. Execution times for a shock physics problem.

Mesh CRAY-YMP CM-2 nCUBE 2
:£:.SizeWm 16,384 Processors 1024 Processors

128X128 32 s 32 s 13s

256X258 78 s 78 s 27 s

512X512 393 s 249 s 82 s

performance, relative to the CRAY, should improve significantly as bigger problems are solved (large problem sizes on

each processor reduce the fraction of time that is used for communication).

The goal of this work is to develop, in the near term, a production level shock physics modeling capability on mas-

sively parallel computers. During the next year, detailed equations of state and models for elastic-plastic behavior, ex-

plosives and fracture will be added to the two-dimensional, massively parallel version of CTH. Three-dimensional

versions of CTH and MESA (which was developed at Los Alamos National Laboratories) will also be implemented on

massively parallel machines

STRUCTURAL MECHANICS

A finite-element structural mechanics code, JAC3D, has been implemented on a MIMD machine.4 The CRAY

version of JAC3D code is used extensively within Sandia to analyze nonlinear mechanics problems involving large ro-

tation and strain. Applications include failure of the lower head during hypothetical severe nuclear reactor accidents, in-

tegrity of welds on computer chips during manufacturing, the performance of weapons components, and safety analysis

of experiments. The model is three-dimensional and quasi-static. Time-dependent loadings can be prescribed and for

each load step, a steady solution is calculated. Temperature dependent elastic-plastic and secondary creep behaviors are

considered as well moving material interfaces. A non-linear conjugate gradient method is used to solve the discretized

equations.

Difficulties encountered in developing a parallel version arose because of the highly irregular geometries of in-

terest Given a calculational grid, each processor must be assigned a portion of the grid. When dealing with rectangular,

cylindrical or spherical grids, mapping to the processors is relatively straightforward. It is much more difficult to map an

irregular domain to the processors in a manner that minimizes the number and distance of communications. Three dif-

ferent methods to automatically decompose grids have been investigated:

(1) A recursive-bisection technique. A given grid is divided in half along a line parallel to one of the axes so that

equal numbers of grid points are in each subgroup. This process is then repeated on each newly created subgroup.

By repeating n times, the calculational grid can be mapped to a hypercube of dimension n.

(2) A graph theory based algorithm. At the start, two opposite extremes of the grid, corresponding to endpoints of

a pseudo diameter, are found. Level sets, which are groups of points roughly an equal distance from an extreme

point, are determined (here, distance refers to the number of edges that must be transversed to get from one vertex

-8-

to another). These sets are then assigned to one of two subgroups, with the selection made according to whichever

extreme is the closest. The entire process is then repeated on each newly created subgroup. Once again, the cal-

culational grid is mapped to a hypercube of dimension n by repeating n times.

(3) An iterative technique developed by Kernighan and Lin. At the start of a step, the graph is divided into two

equal subsets in an arbitrary manner. Grid points are exchanged between these subsets to minimize interprocessor

communication. The process is iterative in nature, and terminates when no exchanges between the subgroups

gives a positive gain. Once again, the calculational grid is mapped to a hypercube of dimension n by repeating n

times.

A disadvantage of the first method is that it requires the absolute spatial positions of the grid points whereas only

connectivity information must be specified to implement the second and third techniques. Each of these schemes assigns

roughly the same number of grid points per processor. However, interprocessor communication times for typical prob-

lems are very different The Kernighan and Lin technique gives the minimum communication and the fastest execution

time for the application. The recursive-bisection method, on the other hand, results in the slowest problem execution. For

a typical structural mechanics problem, there can be as much as a fifty percent difference in problem execution time for

the various division methods.

However, the goal is to reduce the total amount of time a researcher must wait for a solution to a problem of in-

terest. This total time is the problem execution time plus the time it takes to map the grid to the processors. In general,

more complicated division methods, such as the one devised by Kernighan and Lin, take the longest to execute. These

methods are also the ones that result in the fastest problem execution time. Although all divisions are currently done in

parallel, the simple recursive bisection technique (method #1 above) is usually the best choice because the division time

is a small fraction of the total time. The graph baseds methods offer savings when several calculations are done with the

same computational grid (i.e., the division is done only once and the savings in problem execution times accumulate).

Execution times on a CRAY-XMP, a nCUBE 1 and a nCUBE 2 have been compared for a structural mechanics

problem involving the manufacturing of a computer chip. Of interest to researchers was the integrity of several welds as

the chip was cooled to room temperature. This was a small problem for the nCUBE and the parallel performance, relative

to a CRAY, is expected to be higher for larger problems. The problem was solved on the CRAY in about 1700 seconds.

Solution times were 2200 seconds on a nCUBE 1 and 350 seconds on a 1024 processor nCUBE 2. Improvements in the

compiler and the operating system are expected to lower the nCUBE 2 time below 300 seconds. The parallel version of

JAC3D is still in FORTRAN 77 and no attempt was made to optimize any sections of the code using machine language.

Bottlenecks did arise on the parallel machines when data was being outputted to a file on the front end machine. How-

ever, these problems will be alleviated when the parallel disk system arrives in the near future.

CONCLUSIONS

Massively parallel computers are starting to have a large impact on a wide range of applications. New concepts

in heterogenous programming and load balancing for MIMD computers are drastically increasing synthetic aperture ra-

dar (SAR) and SDI modeling capabilities. Researchers are also showing that the current generation of massively parallel

MIMD and SIMD computers are highly competitive with a CRAY on hydrodynamic and structural mechanics codes that

are optimized for vector processors. These results are especially impressive because, in the near future, significant ad-

vances in massively parallel systems are anticipated as more processors are added and the computational power of each

processor increases.

-9

ACKNOWLEDGEMENTS
The work described in this paper was done by several researchers at Sandia National Laboratories, which is op-

erated for the U.S. Department of Energy under contract number DE-AC04-76DP00789.

REFERENCES
1. J.L. Gustafson, G.R. Montry, and R.E. Benner, "Development of Parallel Methods for a 1024-processor hy-
percube," SIAM Journal on Scientific and Statistical Computing, 9,609 (1988).
2. J.L. Gustafson, R.E. Benner, M.P. Sears, and T.D. Sullivan, "A Radar Simulation Program for a 1024-Pro-
cessor Hypercube," in Proceedings of Super-computing «89 (1989).
3. R.D. Halbgewachs, J.L. Tomkins, and John VanDyke, "Implementation of Midcourse Tracking and Corre-
lation on Massively Parallel Computers," Report SAND89-2534, Sandia National Laboratories, Albuquerque,

NM (1990).
4. C.T. Vaughan, "Implementation of JAC3D on the NCUBE/ten," in Proceedings of the Fifth Distributed
Memory Computer Conference (1990), pp. 538-544.
5. S.J. Plimpton, "Molecular Dynamics Simulations of Short-Range Force Systems on 1024-Node Hyper-
cubes," in Proceedings of the Fifth Distributed Memory Computer Conference (1990), pp. 478-483.
6. D.E. Womble, "A Time-Stepping Algorithm for Parallel Computers," SIAM Journal on Scientific and Sta-
tistical Computing, 11,824 (1990).
7. D.E. Womble and B.C. Young, "Multigrid on Massively Parallel Computers," in Proceedings of the Fifth
Distributed Memory Computer Conference (1990), pp.559-563.
8. J.N. Shadid and R.S. Tuminaro, "Iterative Methods for Nonsymmetric Systems on MIMD Machines," in
Proceedings of the 5th SIAM Conference on Parallel Processing for Scientific Problems, to appear.
9. J.M. McGlaun, S.L. Thompson, and M.G. Elrick, "A Brief Description of the Three-Dimensional Shock
Physics Code CTH," Report SAND89-0607, Sandia National Laboratories, Albuquerque, NM (1989).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
S^nment Neither the United States Government nor any agency thereof nor any of their
2ZT makes any warranty, express or implied, or assumes any legal liability or respons,
XfoT he accuracy, completeness, or usefulness of any information >»>»f""l££
process disclosed, or represents that its use would not infringe privately owned rights.\Refer-
KTtarefo to any specific commercial product, process, or service by trade name, trademark,
llf urer, orUerwise does not necessarily constitute or imply its -£-"«"££
mendation or favoring by the United States Government or any agency thereof The views
L opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

■10-

